Let ${a_1},{a_2},.......,{a_{30}}$ be an $A.P.$, $S = \sum\limits_{i = 1}^{30} {{a_i}} $ and $T = \sum\limits_{i = 1}^{15} {{a_{2i - 1}}} $.If ${a_5} = 27$ and $S - 2T = 75$ , then $a_{10}$ is equal to

  • [JEE MAIN 2019]
  • A

    $52$

  • B

    $57$

  • C

    $47$

  • D

    $42$

Similar Questions

Let the digits $a, b, c$ be in $A.P.$ Nine-digit numbers are to be formed using each of these three digits thrice such that three consecutive digits are in $A.P.$ at least once. How many such numbers can be formed?

  • [JEE MAIN 2023]

If ${\log _3}2,\;{\log _3}({2^x} - 5)$ and ${\log _3}\left( {{2^x} - \frac{7}{2}} \right)$ are in $A.P.$, then $x$ is equal to

  • [IIT 1990]

The four arithmetic means between $3$ and $23$ are

The Fibonacci sequence is defined by

$1 = {a_1} = {a_2}{\rm{ }}$ and ${a_n} = {a_{n - 1}} + {a_{n - 2}},n\, > \,2$

Find $\frac{a_{n+1}}{a_{n}},$ for $n=1,2,3,4,5$

If three numbers be in $G.P.$, then their logarithms will be in